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Frequency-Domain Analysis of Coupled Nonuniform
Transmission Lines Using Chebyshev
Pseudo-Spatial Techniques |
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Abstract—The analysis of nonuniform cross-section, lossy and
coupled transmission lines is frequently necessary in the design
and simulation of high speed microelectronics systems. This pa-
per presents a method of performing such simulations on lossy
lines of arbitrary cross section, under the quasi-TEM assump-
tion. The technique incorporates a Chebyshev expansion in the
frequency domain, and is one of the most suitable methods
presently in existence for incorporation into computer aided
design tools.

I. INTRODUCTION

OUPLED LOSSY transmission lines with varying

width and spacing are commonly found in the pack-
aging of high-speed, high density digital electronics. Ta-
pered transmission lines occur in nearly all single chip
packages for high clock rate silicon ECL and Gallium Ar-
senide digital integrated circuits, in many printed circuit
board layouts intended for such chips, at the edges of the
newest metal-organic multichip modules (MCMs) where
the internal leads fan out to accomodate the coarser geom-
etries of hermetic packages and microwave connectors,
and in similar locations in more conventional multilayer
cofired ceramic substrates used by the analog microwave
design community. At the frequencies and bandwidths for
which the metal-organic and ceramic MCMs are being de-
signed, it is absolutely necessary to be able to model the
propagation of wavefronts through groups of tightly cou-
pled, tapered stripline and/or microstrip interconnects,
thereby to assure that waveform integrity will be pre-
served when the actual structures are fabricated and placed
into service.

Previous analyses of the problem of modeling wave-
front propagation along tapered transmission lines include
the method of characters [1] and the time-domain pertur-
bational method [2], among others. Recently, tapered
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transmission lines supporting non-TEM modes have been
investigated [3]; tapered and dispersive lines terminated
with nonlinear loads have also been described [4]. Palu-
sinski [5] introduced a transient analysis of tapered lines
by means of a Chebyshev expansion in the time domain
under quasi-TEM assumptions. Although full-wave anal-
yses are more general and rigorous, a quasi-TEM analysis
can provide a good approximation in the frequency range
below 5 GHz; nearly all of the present technology digital
integrated circuits still operate within this bandwidth.

Of the previous methods, Palusinski’s approach seems
to be satisfactory for implementation as part of a com-
puter aided analysis system. The simulation is suitable for
arbitrary cross sections, handles multiple line systems and
is computationally efficient. However, Palusinski’s
method was developed in the time domain; in this do-
main, the simulation of lossy lines is difficult, because
skin effect resistance varies with frequency. The method
presented here overcomes these difficulties by extending
the method to the frequency domain. The advantages of
a frequency domain approach over a time domain method
lie in the following aspects: First, it can incorporate fre-
quency parameters; second, it avoids the computation of
recursive time steps, third, it avoids the computation of a
state matrix e, thereby resulting in improved numerical
efficiency and stability; finally, it is easier to integrate a
frequency domain algorithm into CAD packages, since
most transmission line networking programs conduct
computations in the frequency domain [6]-[9]. The sim-
ulations performed with this method agree very well with
previous examples of lossy multiple uniform line sys-
tems, and lossless non-uniform line systems as well.

II. FORMULATION

Two general geometric configurations of the problem
to be solved by the new algorithm which will be presented
below are depicted in Fig. 1, upper panel (Fig. 1U) fora
single line and in Fig. 1, lower panel (Fig. 1L), for mul-
tiline cases, where the lines are assumed to be nonuniform
and lossy. It is well known that the skin depth of conduc-
tors varies with the square root of frequency, provided
that the metal thickness is much greater than the skin
depth. The internal inductance of a conductor and the
shunt conductance of imperfect dielectrics vary also with
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Fig. 1. Schematic Diagram of lossy nonuniform transmission line sys-
tems. Upper: Single transmission line system; Lower: multiple transmis-
sion line system.

frequency. The capacitance (electrostatic induction coef-
ficients) and external inductance seem not to vary appre-
ciably with frequency. We will, however, characterize all
four parameters, i.e., capacitance, inductance, resistance
and conductance, as functions of w for maximum gener-
ality. Since the transmission line under consideration has
variable geometry with respect to the distance coordinate,
the quasistatic parameters will be functions of this dis-
tance parameter.

The pseudo-spatial method using Chebyshev coeffi-
cients was chosen to solve this problem. Chebyshev ex-
pansions are defined on the interval x € [—1, +1]. How-
ever, transmission line problems are usually formulated
in the interval z € [0, /], where [ is the length of the line.
Therefore, the linear transformation x = (2z/I) — 1 is
performed before proceeding with the analysis. Note that
the use of this transformation requires the values of the
line parameters to be scaled by [/2.

We expand the (known) quasi-static parameters in a
Chebyshev series. For example, the mutual inductance of
the kth line on the jth line is LY? (x, w) and can be ex-
panded as

@

LP@ o) = B 1P @T,E M

where T, (x) is the Chebyshev polynomial of type 1 and

order n, and L’ is defined as

[»2]

;(;q)n=%q)0+q)l+¢2+.." (2)

since LYY (x, w) can be determined from the geometry,
the coefficients [{¥ (w) are given by

1 +
19 (w) = S+ L, 0)T,(x)
—1 /1 _ x2
The method used to calculate the parameters as func-

tions of distance is to slice the line at certain points along
its length. The parameters can be calculated by computer

dx. 3)
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aided design tools, for instance, MagiCAD [6]-[9]. We
can now define a piecewise linear function for the param-
eters. This function is then expanded by the above equa-
tion. Truncation of the series gives a polynomial with
minimal maximum error for the number of terms chosen
(this reduces the chance of strictly positive parameters be-
coming negative throughout any portion of the length of
the line).

The telegraphist’s equations are used to solve the sys-
tem for v(x, ©) and i(x, ?) (specifically the near-end
v(—1, ?) and far-end v(+1, ¢) voltages. In the frequency
domain the telegraphist’s equations are

dv; (x, &G -

_—vjfixx w) - kgl (R(Jk)(X, (-0) + ij(jk))ik(x’ w) (4)
di (x, N ]

—- l](;cx w) = k§l (G(]k)(X, 60) + ij(Jk))vk(xs w)' (5)

2.1 Single Line Case

Rewriting these telegraphist’s equations for a single
line, with the line length normalized to the interval x €
[—1, +1], we have

D - 2, wite, @ ©
di(x, w) o
. Y(x, w)v(x, w) 0
where
Z(x, w) = R(x, w) + jwL(x, w) (8)
Y(x, w) = Gx, w) + jwC(x, w). 9

The derivatives of voltage and current with respect to x
are given by

doix, ©) & d
— = 2 @@ T TG
Ne
= 2 af(@)T,® (10)
. Nc
di(x, w)  §v d
— = 2 @ o (T,0)]
Nc
= 2 b T,() 1y
where the relation
1
ay =5;(af_1 ~ ansy) (12)
holds forn = 1,2, + - - . The a, and b, terms are lost due

to the differentiation. These terms are to be determined
later according to the boundary equations of the problem.
Now define the vectors |a), |a') and |a*):

lay =1lag a **+ ayd” (13)
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la'y =lay a - ayei]” (14)
la*y = [af af --- af)" (15)

We can now write:
la'y = D%|a*) (16)

and defining |b), |6') and |b* ), in a similar manner we
can write:
6"y = D|b*> (amn

where D€ is called the Chebyshev differentiation matrix
and the entries of the ith row and jth column of this ma-
trix are given by

DG, j)
1
2% fori =j
i
= ~% fori=j—2;i,j=1,2,+-+,Nc+ 1.
0 otherwise

(18)

The nonuniformity of the line parameters can be char-
acterized by means of their expansion coeflicients. Sub-
stituting the expansions developed above into the original
equation, we have

Nc
2 ak (@) T, ()

N¢ Nc
= -2 2 6@u@LOLE

19

Ne
2 b @) T,()

Nc Nc

- 2 2 4, (@) (@) T, T ).

i

(20)

Taking the Chebyshev inner product of both sides of these
equations, and using the Chebyshev triple product, we ar-
rive at

la*) = Xz|b) @n

|b*) = Xy|a) (22)
where the entries of the ith row and jth column (begin-
ning with row and column number 0) of Xz and Xy are
given by

Xz, 7)) = O‘i](Zi+j + Z|i—j|) (23)

Xy ) = oj(Yiaj + Yiioyp) (24)

N¢ Nc
<— ng(; bn (w) Tn(x)> <k§(; Zk(O)) Tk(x)> aner1 = — @ - a,

Nc Nc
<— 2 a, (@) T, <x>> <,§; Ye(@) T (x)>
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fori,j=0,1,2,--+,Ncand

(-1/4
A

A pair of vectors that will be useful later are the row vec-
tors of length N + 1, { fy| and { fz|, defined as

(=1 =1 1 =1 -+ (=]
(fl=0G 1 1 1---1] 26)

By using the identities 7,(+1) = +1 and T,(—1) =
(—1)" we can see that the near/far end voltages/currents
can be written as

ifj=0
/ 5)

otherwise.

(fulay = v(=1) 27)

(frlay = v(+1) (28)

Cfalbdy = i(=1) (29)
and

(fel b)Y = i(+1). (30)

The series Z5¢*! a, T, (x) should approximate the voltage
v(x) as well as 3¢ q, T, (x) if N is chosen large enough
(that is, ay.4; —> 0) so that at the far end

u(+1) =%+a1 ta+ o +ay G
or
2 — 4y — ' T apne + U(+1) (32)
allowing us to write in vector/matrix form
la'y = Qrla) + v(+1)|epd (33)
where Qp and |er) are defined as
0 0
0 #
Or = . (34)
— -1 -1 -1
legy =10 0 -+ 1" (35)

Similarly, at the near end of the line the current can be
written as

'y = QulbY + i(=1)|en) (36)
and Qy and |ey) are defined as
1 0
0 1
Oy = . . (37
3(=DY —(=DY (=D -1
lexy) =0 0 - -- (—DNe+ T, 38)
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Consider a line terminated at one end by a generator
voltage in series with a generator (source) impedance, and
at the other with a load impedance. The termination equa-
tions are then written as

Vo = Zgi(—1) + v(—1) 39)
v(+1) = Z;i(+1) 40
Defining the column vectors |Wyg) and |Weyd:
v(=1)
|WNF> = L(+1)}
Wiy = {U(H)} @)
i(—1)

we can write the termination equations in vector/matrix
form as

Wyey = Zp|Wewy + |UD 42)
where Zr and |U ) are given by
0 -z
Z; = 43
T z' o } 43)
and
v,
U = } 44
| o (44)
Combining (17), (22) and (36), we write
D Xylay = Qylb) + i(—1)]ep. (45)
Combining equations (16), (21) and (33), we write
DEX,|by = Qplay + v(+1)|er) (46)
In vector/matrix form, these equations become
Xyl p> = Que| P> + Eyp|Wey) @7
with the following definitions:
X DXy 0 } (438
"1 0o DbD°x, )
<] 'aq 49)
P =
L|b)
[0 QN:I
QNF = (50)
LQOr O
RIOEES
Ey = N . (62))
| |ery 10
Solving this equation, we have
| pY = (Xu — Onp)""Enr| Wiy (52)
Defining Fyr to be
vl <0
Fyr = [ (53)
O < fA

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40. NO. 11, NOVEMBER 1992

we have

| Wy = Fyp| p) (54)

and now the general solution for the single line case can
be written as

|P> = Xy — QNF)W]ENF

* {Fyp[Xy — Onrl 'Exg — Z7} 7' UY. (55)

2.2 Multiple Coupled Lines

In practice, the important issues are crosstalk values
between lines, the effect of multiple reflections (due to
mismatching), their effects through coupling to the neigh-
boring lines, and so on. These issues can be addressed
through the analysis of multiple coupled tapered lines. The
extension from the single line case to the multiple line
case is straightforward (except for notation), and is de-
rived in the appendix for the review of interested readers.
In the following section, we will present a set of results
from real world problems found in actual interconnect
structures, using the equations derived in the appendix for
the multiple tapered line case.

III. NUMERICAL EXAMPLES

To illustrate the effectiveness of the frequency domain

"~ method described in this paper, three examples will be

presented. In the first two, we will compare our results
with data from the literature; the agreement of the results
from this new method with the published data are quite
impressive. The last example deals with tapered lossy and
coupled lines, for which no comparison is as yet avail- _
able.

Example 1—Tapered Lossless Coupled Lines: Fig. 2
depicts the geometry and terminations of the tapered lines
discussed in [5], for which inductance and capacitance
matrices, as a function of distance, were computed sec-
tion by section using the Mayo MagiCAD computer aided
design system. In Figs. 3U and 3L, waveforms at the near
and far ends, for both the active and passive lines, are
presented using a Chebyshev series containing cight
terms, in the time and frequency domains respectively. It
will be observed that the results of the time domain Che-
byshev algorithm in Fig. 3U and the frequency domain
Chebysheyv algorithm in Fig. 3L agree extemely well. The
execution times on a VAX-3500 for the two algorithms
were 5.2 s and 5.6 s respectively. As the geometries be-

" come more complicated, the frequency domain method
~ will be more efficient than the time domain approach.

Example 2—Uniform Lossy Coupled Lines: To test the
ability of the new algorithm to handle frequency depen-
dent parameters, we compared our results for ‘‘tapered’’
lines with zero tapering angle against the uniform line al-
gorithm of Djordjevic [7] in Figs. 4U and 4L. The resis-
tance matrix was assumed to vary in proportion to the
square root of frequency (although a more complicated
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Fig. 2. Lossless tapered transission line structures typically found in
printed circuit boards and multichip modules. Upper: top view; Middle:
edge view; Lower: electrical equivalent line.
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Fig. 3. Comparison of simulation results from Palusinski’s method with

results from pseudo-spatial domain tapered line algorithm of electrical re-
sponse of two tapered lossless microstrip transmission lines. Upper: Pal-
usinski’s results; Lower: pseudo-spatial domain results.

function or even a lookup table can also be incorporated).
Again, the agreement of the two methods was excellent.
Example 3—Tapered Lossy Coupled Lines: Two: cou-
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Fig. 4. Comparison of simulation results from Djordjevic’s method and
from pseudo-spatial domain tapered line algorithm of electrical response
of two parallel uniform transmission lines. Upper: Djord]evw s results;
Lower: pseudo-spatial domain results.

pled lossy, nonuniform copper lines, with a total length
of 5 ¢cm, are presented in Fig. 5U; for comparison, the
geometric equivalent ‘‘average’’ line pair, i.e., two uni-
form lines, is depicted in Fig. 5L. The conduction loss
was not assumed. to vary in proportion to the square root
of frequency, because the dimension of the line cross sec-
tion is of the same order as, or even smaller than, the skin
depth (for a frequency component range of dc-3 GHz).
Further, we have found that if we do assume that conduc-
tion loss varies in proportion to the square root of fre-
quency, the resulting simulations exhibit a violation of
causality. That is, the output waveforms at the far end of
the line appear at the same instant as the input waveforms
are applied to the near end of the line, which is physically
impossible given that the length between the input and
output ends of the interconnect was nonzero in the simu-
lations. Instead, normalized frequencies [10] for each
cross sectional slice along the length of the lines were
calculated and the corresponding resistances as a function
of frequency were obtained. Fig. 6U illustrates the wave-
forms of the driven and listening lines at both near and
far ends. Fig. 6L shows waveforms of the same lines as
in Fig. 6U, but the direction of the taper has been reversed
(so that the waveform results will be different).

To compare the lossy case results with results from
lossless lines of the same geometry and with lossy lines
of uniform mean cross sections, two additional cases were
simulated. In Fig. 7U we used the same line geometry as
in Fig. 6U, but an infinite conductivity was assumed so
that the lines are lossless (dielectric losses are assumed to
be so small that they may be neglected). By comparing
Fig. 6U with 7U, we find that the conduction loss causes
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Fig. 6. Simulation results from pseudo-spatial domain tapered line algo-
rithm of electrical response for lossy, tapered microstrip transmission lines
driven from both wide and narrow ends.

the far-end waveform to be of smaller amplitude and
smoother than that from the lossless line; meanwhile, the
conduction loss causes the near-end waveform to exhibit
a larger amplitude. This is because the characteristic
impedance of the lossy line is greater than that of the loss-
less line, and therefore, by the voltage division rule, a
greater fraction of the total voltage from the generator is
delivered to the line.

It may be observed by comparing Figs. 7L and 6U that
the nonuniformity makes the near-end waveform more
uneven; note the larger ‘‘hump’’ and steeper slope which
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Fig. 7. Simulation results from pseudo-spatial domain tapered line aigo-
rithm of electrical response of lossless tapered microstrip transmission lines
and lossy equivalent constant-width microstrip transmission lines.

are apparent on the ‘‘logic high’’ portion of the wave-
form. This is due to positive reflections caused by the
gradually increasing impedance of the tapered line. How-
ever, by reversing the direction of the line taper, the cor-
responding ‘logic high’’ region of the waveform shown
in Fig. 6L is flatter than is the case for the uniform lines,
because the negative reflections of the gradually decreas-
ing impedance partially cancel the rising voltage values
in the logic high region of the uniform line; in the mean-
time, the near-end crosstalk voltage is also minimized. By
changing the tapering angle and direction, the waveform
can be well controlled. This ability to alter the confor-
mation of the waveforms to any desired shape may find
some useful applications in practice. In each of the cases
discussed in Example 3, eight Chebyshev terms and 1024
FFT points were used; the execution time on a VAX-3500
was 37 s.

IV. CoNcLUSIONS

In this paper, a technique has been described for the
analysis of the wavefront propagation characteristics of
multiple tapered stripline and microstrip lines used as in-
terconnects in high speed, high density multichip digital
circuits. The frequency domain method computes cross-
talk and waveform distortions, and correctly accounts for
conductor losses (as a function of frequency) and for
varying conductor widths and spacing. The technique, re-
ferred to as the pseudo-spatial technique, utilizes the or-
thogonality of both Fourier transform and Chebyshev ex-
pansions to simplify the mathematical formulation. It turns
out that the new algorithm solves uniform lines as a spe-
cial case, almost as rapidly as do less general methods
(modal analysis [7], for instance).
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An improvement over the time domain approach was
achieved by avoiding time stepping recursive computa-
tions and state matrix computations, thus improving nu-
merical efficiency and stability. Frequency dependent
phenomena, including skin effect, internal inductance and
dielectric loss can also be addressed by this technique.
The frequency domain algorithm is also easier to incor-
porate with other transmission line networking CAD
packages, which themselves operate in the frequency do-
main. The pseudo-spatial method was derived under the
quasi-TEM assumption, in that any dispersive effects
caused by transverse current flows were ignored. How-
ever, within a frequency range of less than approximately
5 GHz, these derivations using the Quasi-TEM assump-
tion appear to provide an excellent simulation of the per-
formance of tapered lines, and great simplicity in both
derivation and implementation.

APPENDIX
DERIVATION OF MULTIPLE CoUPLED LINE CASE

As an extension of the results derived in Section 2.1 for
the single line case, we derive in this appendix the equa-
tions for the case of multiple coupled tapered lines. The
voltage and current on the jth line of an N line system is
given by the following equations:

dv y

j = - 2 2 Wi (56)
di; Yo

d—; = = 2 YPmy (57)

for any particular frequency. Here, Z% (x) and Y% (x)
represent the self (j = k) and mutual impedances and ad-
mittances of the kth line on the jth line, which are given
by

Z(jk)(x) — R(jk)(x) + ij(”‘)(x)
YR = GP @) + juCY ).

(58)
(59

The Chebyshev expansions of voltage and current for
the jth line are

Nc

v, = n; a¥T, () (60)
Nc

i = 2 b T, (). ®61)

The differentiation relation still holds, and can be written
as

la?y = DCla*) (62)

5Dy = DE|bW*) 63)

The entries of the nonuniformity matrices, X7 and
X% can be written as

XU, j) = oy [Z0F) + Z[™)] (64)

X9 G, ) = oY) + Y (65)
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where o is given by (25). For the jth line, then

|au)* X(zmlbm> + X”Z)|b‘2)>

4o (JN)|b(N)> (66)
bW*y = X(le)la(l)) + XY 1a?y

+ e+ XV |a™y. 67)

Now if we define the following N X (N¢ + 1) length
column vectors, the pertinent equations can be written in
more compact form as

Fla(l)*> |b(l)*>
|a @ b @*
|[4%) = . ; |B*y = (68)
_1a(N)*> lb(N)*>
_|a<1)> 1bDy
la(2)> lb(2)>
|4y = . ; |BY = .o (69)
_Ia(N)> lb(N)>
]a(l)I ‘ ib(1)1>
|a(2)l 1 |b(2)'>
4!y = ; |BY = (70)
L|a(1v)1> ™y
Defining X, and Xy to be
”‘X(le) X(Zm . X(Zw)'1
X('ll) X(22) . X(ZN)
x,=|"% 77 z (71)
LXQN‘) xX02 ..o. xm |
XYY XD ... x (N7
X X@ ... xV
=7 " 72)
Lx(;Vl) X(}VZ) . e X(}VN)_
we can write
|A*) = Xz|B) (73)
and
|B*) = Xy|A). (74)

With D§ defined as the block diagonal of D€ we can write
the differentiation matrix equation as
|4y = D§|Aa*) (75)

|B'y = D§|B*). (76)
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The boundary condition relations for each line still hold,
in the form of

a9y = Qplay + v;(+1) e (77
b = @ulby +i(-Dlewy  (78)

so that if we define Qpp, Epp, Ovp, Enp to be the block
diagonal matrices/vectors of Qp, Er, Qy, Ey, respec-
tively, then the boundary condition relations are

4" = Qmp|A) + Epp|v(+1)) (79)
IB'Y = Qwp|BY + Enpli(—1)) (80)

so that we can now combine (76), (74) and (80) into
D5Xy|A) = Quwp|BY + Expli(=1)>.  (81)

and we can also combine (75), (73) and (79) to form

D5X;|BY = Q|4 + Epplv(+1)) (82)
so that in turn, we can define
[Py = _|A>} (83)
| 1B
(D$X 0
Xy=| " } (84)
0 DSx,
0 Ow
Ovr = } (85)
L O O
0 E
Eyr = ”D} (86)
LEmp 0
and write
Xy (P> = Qup|P) + Enp|Wpy) @87

Again, if we define Fyp and Fpp to be the block diagonal
of the vectors { fy| and { fr| respectively, and define

Fyr = { }
0 Fgp

we can then write

(88)

Fyp|PY = |Wyp). (89)

The terminations on each line are described for the jth
line, by the equations

Vi@ =2y (=1 + (=1 (90)
vi(+1) .
i(+1) = jzm + I (). ©1)
L
Using the following definitions to simplify notation:

Z(é) 0 --- 0
0 z@ --- 0

Zec=| . 7 . ) 92)
0 0 A
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zZO 9 ... 0
0 Z% e
z, = . " (93)
| 0 0 - ZM
[0 —Z,
Z, = 94
T Z' 0 } 94)
[ o+ 1))
+1
lo(+1)) = [a(£1)) (95)
| oy (1))
[ i+ 1))
(1))
ey = | &Y (96)
| liv(£1D))
[ o(=1)) ]
Wyr) = 97
| Wr> sy 97)
o+ 1)y ]
Wey) = 98
W) = Ly | (98)
Nz
V(2)>
Vo) = it (99)
| vy ]
[ 1)
1(2)>
Ly = i (100)
1™
s
Uy = Vo } (101)
LI
This notation allows us to write
|\Wipd = Zg|Weyy + |U). (102)

The solution, after algebraic manipulations, turns out to
be

[Py = Xy — Owp) 'Enr
« {Fnp(Xy — QP 'Eng — Z7 U,
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