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Abstract—The analysis of nonuniform cross-section, lossy and

coupled transmission lines is frequently necessary in the design

and simulation of high speed microelectronics systems. This pa-
per presents a method of performing such simulations on lossy
lines of arbitrary cross section, under the quasi-TEM assump-

tion. The technique incorporates a Chebyshev expansion in the
frequency domain, and is one of the most suitable methods
presently in existence for incorporation into compnter aided

design tools.

I. INTRODUCTION

c OUPLED LOSSY transmission lines with varying

width and spacing are commonly found in the pack-

aging of high-speed, high density digital electronics. Ta-

pered transmission lines occur in nearly all single chip

packages for high clock rate silicon ECL and Gallium Ar-

senide digital integrated circuits, in many printed circuit

board layouts intended for such chips, at the edges of the

newest metal-organic multichip modules (MCMS) where

the internal leads fan out to accommodate the coarser geom-

etries of hermetic packages and microwave connectors,

and in similar locations in more conventional multilayer

cofired ceramic substrates used by the analog microwave

design community. At the frequencies and bandwidths for

which the metal-organic and ceramic MCMS are being de-

signed, it is absolutely necessa~ to be able to model the

propagation of wavefronts through groups of tightly cou-

pled, tapered stripline and/or microstrip interconnects,

thereby to assure that waveform integrity will be pre-

served when the actual structures are fabricated and placed

into service.

Previous analyses of the problem of modeling wave-

front propagation along tapered transmission lines include

the method of characters [1] and the time-domain pertur-

bational method [2], among others. Recently, tapered
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transmission lines supporting non-TEM modes have been

investigated [3]; tapered and dispersive lines terminated

with nonlinear loads have also been described [4]. Palu-

sinski [5] introduced a transient analysis of tapered lines

by means of a Chebyshev expansion in the time domain

under quasi-TEM assumptions. Although full-wave anal-

yses are more general and rigorous, a quasi-TEM analysis

can provide a good approximation in the frequency range

below 5 GHz; nearly all of the present technology digital

integrated circuits still operate within this bandwidth.

Of the previous methods, Palusinski’s approach seems

to be satisfactory for implementation as part of a com-

puter aided analysis system. The simulation is suitable for

arbitrary cross sections, handles multiple line systems and

is computaticmally efficient. However, Palusinski’s

method was developed in the time domain; in this do-

main, the simulation of lossy lines is difficult, because

skin effect resistance varies with frequency. The method

presented here overcomes these difficulties by extending

the method to the frequency domain. The advantages of

a frequency domain approach over a time domain methlod

lie in the following aspects: First, it can incorporate fre-

quency parameters; second, it avoids the computation of

recursive time steps, third, it avoids the computation of a

state matrix e ~, thereby resulting in improved numerical

efficiency and stability; finally, it is easier to integrate a

frequency domain algorithm into CAD packages, since

most transmission line networking programs conduct

computations in the frequency domain [6]–[9]. The sim-

ulations performed with this method agree very well with

previous examples of lossy multiple uniform line s,ys-

tems, and lossless non-uniform line systems as well.

II. FORMULATION

Two general geometric configurations of the problem

to be solved by the new algorithm which will be presemed

below are depicted in Fig. 1, upper panel (Fig. lU) for a

single line and in Fig. 1, lower panel (Fig. 1L), for mul-

tiline cases, where the lines are assumed to be nonuniform

and 10SSY. It is well known that the skin depth of conduc-
tors varies with the square root of frequency, provided

that the metal thickness is much greater than the slkin

depth. The internal inductance of a conductor and the

shunt conductance of imperfect dielectrics vary also with
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aided design tools, for instance, MagiCAD [6]–[9]. We

can now define a piecewise linear function for the param-

eters. This function is then expanded by the above equa-

tion. Truncation of the series gives a polynomial with

I [ZG]

minimal maximum error for the number of terms chosen

(this reduces the chance of strictly positive parameters be-

coming negative throughout any portion of the length of

the line).
The telegraphist’s equations are used to solve the sys-

tem for V(X, t) and i(x, t) (specifically the near-end

V( – 1, t) and far-end U( + 1, t) voltages. In the frequency

domain the telegraphist’s equations are

duj (X, W)
— = ~;, (l?(jk)(x, w) + jcdL(jk))i~(x, w)

dx
(4)

Fig. 1. Schematic Diagram of 10SSY nonuniform transmission line sys-

tems. Upper: Single transmission line system; Lower: multiple transmis- d~ (x, u)

sion line system.
— = ,$, (G(]k) (X, W) + jtiC(~k)) V,(X, W). (5)

&

frequency. The capacitance (electrostatic induction coef-

ficients) and external inductance seem not to vary appre-

ciably with frequency. We will, however, characterize all
four parameters, i.e., capacitance, inductance, resistance

and conductance, as functions of u for maximum gener-

ality. Since the transmission line under consideration has

variable geometry with respect to the distance coordinate,

the quasistatic parameters will be functions of this dis-

tance parameter.

The pseudo-spatial method using Chebyshev coeffi-

cients was chosen to solve this problem. Chebyshev ex-

pansions are defined on the interval x e [– 1, + 1]. How-

ever, transmission line problems are usually formulated

in the interval z e [0, 1], where 1 is the length of the line.

Therefore, the linear transformation x = (2z /1 ) – 1 is

performed before proceeding with the analysis. Note that

the use of this transformation requires the values of the

line parameters to be scaled by 1/2.

We expand the (known) quasi-static parameters in a

Chebyshev series. For example, the mutual inductance of

the kth line on the j th line is L ‘~~)(x, ti) and can be ex-

panded as

where Tn (x) is the Chebyshev polynomial of type 1 and

order n, and E‘ is defined as

i:’I’n=;xo+d’,+%+””.. (2)

since L “k) (x, w) can be determined from the geometty,

the coefficients Z\Jk)(w) are given by

The method used to calculate the parameters as func-

tions of distance is to slice the line at certain points along

its length. The parameters can be calculated by computer

2.1 Single Line Case

Rewriting these telegraphist’s equations for a single

line, with the line length normalized to the interval x c

[–1, +1], we have

di(x, w)
— – – Y(X> w) V(X> co)

dx

(6)

(7)

where

Z(X> w) = R(x, u) + jwL(x, a) (8)

Y(X> (J) = G(x, Q) + jwc(x, w). (9)

The derivatives of voltage and current with respect to x

are given by

dv(x, W)
= ~~~ an (~) ~ [T.(x)]

&

= ~&’ a ~ (a) T.(x) (lo)

where the relation

(11)

(12)

holds forn=l,2, ”””. The a. and b. terms are lost due

to the differentiation. These terms are to be determined

later according to the boundary equations of the problem.

Now define the vectors la), lal) and la*):

la) = [a. al “ “ “ a~c]~ (13)
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Ia’)= [al az ““” aNc+l]~ (14)

la*) = [aj af “ “ “ a&]~. (15)

We can now write:

la’) =Dcla*) (16)

and defining lb), Ib‘ ) and Ib * ), in a similar manner we

can write:

lb’) =Dclb*) (17)

where D c is called the Chebyshev differentiation matrix

and the entries of the i th row and j th column ‘of this ma-

trix are given by

Dc(i, j)

(1

5
fori=j

—

(
1— —— fori=j– 2;i, j=l,2, ”.”, Nc+ 1.

2i

otherwise
o

(18)

The nonuniformity of the line parameters can be char-

acterized by means of their expansion coefficients. Sub-

stituting the expansions developed above into the original

equation, we have

(19)

~:; b: (a) T. (x) =
(

– ~f~ an(w) Tn (x)
)(

,:; y, (co) T, (x)
)

= - ~$~ ,f~ an(ti) yk(u) Tn (x) Tk(x).

(20)

Taking the Chebyshev inner product of both sides of these

equations, and using the Chebyshev triple product, we ar-

rive at

la”> = Xzlb) (21)

lb*) = XYla) (22)

where the entries of the i th row and j th column (begin-

ning with row and colkmn number O) of Xz and Xy are

given by

X=(i, j) = a~(z~+j + ‘Ii-jl) (23)

Xy(i, j) = ~~(fi+j + ~i-jl) (24)

fori, j=0,1,2, ”””, Ncand

[

–1/4 ifj = O

% =
–1/2 otherwise.

A pair of vectors that will be useful later are the row

tors of length Nc + 1, ( JNI and ( $Fl, defined as

(fNl = [; –1 1 –l””” (–l)N’]

(f~l=[; l 1 l“”” 1].

2027

(25)

vec-

(2!6)

By using the identities T,t ( + 1) = + 1 and Tn ( – 1) =

(– 1)” we can see that the nearifar end voltagesfcurrents

can be written as

(fNla) = ~(–1) (2!7)

(~~la) = v(+l) (2!8)

(fNlb) = i(–1) (2!9)

and

(fFlb) = i(+l). (30)

The series Z ~ + 1
—

an Tn (x) should approximate the voltage

v(x) as well as E ~ an T. (x) if Nc is chosen large enough

(that is, aNC+ 1 ~ O) so that at the far end

v(+l)=~+a1+a2 +””” + a~c+l (31)

or

a.
ak+l=2al-a2- . . .

—— — – aNc + v( + 1) (32)

allowing us to write in vectorlmatrix form

lal) = QFla) + v(+l)leF) (33)

where QF and IeF) are defined as

r 010”””0 1

‘F=K1II ’34)

leF) = [0 O . “ “ l]~. (35)

Similarly, at the near end of the line the current can be

written as

lbl) = QNlb) + i(-l)lejV) (36)

and QN and IeN) are defined as

[

o 1 0-”””0

0 1 “o
QN= o.:”.;: 1(37)

. .

;(-l)N’ -(-l)Nc (-l)Nc “ “ “ 1

\eN) = [0 O “ “ “ (-l)Nc+l]~. (38)
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Consider a line terminated at one end by a generator

voltage in series with a generator (source) impedance, and

at the other with a load impedance. The termination equa-

tions are then written as

v~ = z~i(–1) + V(–1) (39)

v(+l) = Z~i(+l) (40)

Defining the column vectors IWNF) and I WFN):

[1V(–1)
IWNF) = ~(+1)

[1V(+l)
IWFN) = ~(_l) (41)

we can write the termination equations in vector/matrix

form as

ll’vNF) = zTlw,~) + Iu) (42)

where ZT and I U ) are given by

[1o –z~
z~ =

z~l o

and

(43)

(44)

Combining (17), (22) and (36), we write

~cxy[~) = QN\ )b + i(–l)\eN). (45)

Combining equations (16), (21) and (33), we write

DcXzlb) = QFla) + v(+l) IeF) (46)

In vector/matrix form, these equations become

XHIP) = QNFIP) + ~AJ~l~~N) (47)

with the following definitions:

[

DCXY O
x~ =

o 1DCXZ

[1la)

‘p)= lb)

[1oQN
QNF =

Q, O

(48)

(49)

(50)

we have

\WN~) = ~Nfi
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p) (54)

and now the general solution for the single line case can

be written as

I P) = (XH – QNF)-’~W

. {FN~[XH - QN~]’lEN~ -- ZT}-l IU). (55)

2.2 Multiple Coupled Lines

In practice, the important issues are crosstalk values

between lines, the effect of multiple reflections (due to

mismatching), their effects through coupling to the neigh-

boring lines, and so on. These issues can be addressed

through the analysis of multiple coupled tapered lines. The

extension from the single line case to the multiple line

case is straightforward (except for notation), and is de-

rived in the appendix for the review of interested readers.

In the following section, we will present a set of results

from real world problems found in actual interconnect

structures, using the equations derived in the appendix for

the multiple tapered line case.

III. NUMERICAL EXAMPLES

To illustrate the effectiveness of the frequency domain

method described in this paper, three examples will be

presented. In the first two, we will compare our results

with data from the literature; the agreement of the results

from this new method with the published data are quite

impressive. The last example deals with tapered lossy and

coupled lines, for which no comparison is as yet avail-

able.

Example l—Tapered Lossless Coupled Lines: Fig. 2

depicts the geometry and terminations of the tapered lines

discussed in [5], for which inductance and capacitance

matrices, as a function of distance, were computed sec-

tion by section using the Mayo MagiCAD computer aided

design system. In Figs. 3U and 3L, waveforms at the near

and far ends, for both the active and passive lines, are

presented using a Chebyshev series containing eight

terms, in the time and frequency domains respectively. It

will be observed that the results of the time domain Che-

byshev algorithm in Fig. 3U and the frequency domain

Chebyshev algorithm in Fig. 3L agree extemely well. The

execution times on a VAX-3500 for the two algorithms

Solving this equation, we have

IP) = (XH – QNF)-lENF

Defining FN~ to be

FN~ =
[

(fNl (ol -
(01 (fFl_

(51)

w~Al) (52)

(53)

were 5.2 s and 5.6 s respectively. As the geometries be-

come more complicated, the frequency domain method

will be more efficient than the time domain approach.
Example 2—Uniform Lossy Coupled Lines: To test the

ability of the new algorithm to handle frequency depen-

dent parameters, we compared our results for ‘ ‘tapered”

lines with zero tapering angle against the uniform line al-

gorithm of Djordjevic [7] in Figs. 4U and 4L. The resis-

tance matrix was assumed to vary in proportion to the

square root of frequency (although a more complicated
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function or even a lookup table can also be incorporated).

Again, the agreement of the two methods was excellent.

Example 3—Tapered Lossy Coupled Lines: Two cou-
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of two parallel uniform transmission lines. Upper: Djordjevic’s results;

Lower: pseudo-spatial domain results.

pled lossy, nonuniform copper lines, with a total length

of 5 cm, are presented in Fig. 5U; for comparison, the

geometric equivalent “average” line pair, i.e., two uni-

form lines, is depicted in Fig. 5L. The conduction loss

was not assumed to vary in proportion to the square :root

of frequency, because the dimension of the line cross ~sec-

tion is of the same order as, or even smaller than, the skin

depth (for a frequency component range of de-3 GIHz).

Further, we have found that if we do assume that conduc-

tion loss varies in proportion to the square root of fre-

quency, the resulting simulations exhibit a violatiou of

causality, That is, the output waveforms at the far end of

the line appear at the same instant as the input waveforms

are applied to the near end of the line, which is physically

impossible given that the length between the input and

output ends of the interconnect was nonzero in the simu-

lations. Instead, normalized frequencies [10] for each

cross sectional slice along the length of the lines were

calculated and the corresponding resistances as a function

of frequency were obtained. Fig. 6U illustrates the wave-

forms of the driven and listening lines at both near and

far ends. Fig. 6L shows waveforms of the same lines as

in Fig. 6U, but the direction of the taper has been reversed

(so that the waveform results will be different).

To compare the lossy case results with results from

lossless lines of the same geometry and with lossy lines
of uniform mean cross sections, two additional cases were

simulated. In Fig. 7U we used the same line geomet~y as

in Fig. 6U, but an infinite conductivity was assumed so

that the lines are lossless (dielectric losses are assumed to

be so small that they may be neglected). By comparing

Fig. 6U with 7U, we find that the conduction loss causes



2030 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 40, NO. II, NOVEMBER 1992

3Oon

COUPLED NON-UNIFORM MICROSTRIPLINES

‘“””fI I ! lE.*dl..w)
.1 .0.8 08 ?

AVSRAGE UNIFORM MICROSTRIP UNES

m,,?(.w?

Fig. 5. Geometry and terminations of coupled nonuniform microstrip lines
and their “average” uniform micro strip line equivalents. Upper: nonuni-

form line structure; Lowe~ average uniform line equivalents.

LINES DRIVEN FROM WIDE END OF TAPER

1.0

0.8

FL
AM”,
I-In+

~ 0.6 R,awnsa
/-. -,

,..

j 0.4 .#..-’ “-i
g’: :

0.2 :; \

. . .. . .
0.0 J .

..,o~, f

0.10 f’.., ‘y:

‘u, Rnpon”
:

0.0s I

z’ ‘6 .4

:0.ao q%-’. ‘:p;~....j-g :,. ,
-0.0s ; :

; ,8’
-0.10 ty”

L 1 I I I 1 1 ! I
0.0 0.4 0.8 1.2 1.6

Time, nsae -rhln, Ma

LINES DRIVEN FROM NARROW END OF TAPER

1.0

0.8

m

AcW.
LIIU

; 0.6 --------
Rs$Ponsc

& 0,4 ~......’ ..;,
g
:

0.2 ;
:
;

~. :

0.0 :
:

..20~6. . .
mme, nzee

-1
0.10,-*--., .DW**

;

I R,%.
0.0s \

%8 ,.,. ‘-; ;~ .....&O.oa,, ; %1,..”/ :“..., ---:
g :,; ,

: :’
-0.0s w , :

‘.% j
-0.!0

L-+l+&J
0.0 0.4 1.6

Tim: nsae “

10/9$ IGWP

Fig. 6. Simulation results from pseudo-spatial domain tapered line algo-
rithm of electrical response for lossy, tapered micro strip transmission lines

driven from both wide and narrow ends.

the far-end waveform to be of smaller amplitude and

smoother than that from the lossless line; meanwhile, the

conduction loss causes the near-end waveform to exhibit

a larger amplitude. This is because the characteristic

impedance of the lossy line is greater than that of the loss-

less line, and therefore, by the voltage division rule, a

greater fraction of the total voltage from the generator is

delivered to the line.

It maybe observed by comparing Figs. 7L and 6U that

the nonuniformity makes the near-end waveform more

uneven; note the larger “hump” and steeper slope which

— SOww waveforms
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Fig. 7. Simulation results from pseudo-spatial domain tapered line algo-
rithm of electrical response of lossless tapered microstrip transmission lines

and 10SSYequivalent constant-width mlcrostrip transmission lines.

are apparent on the “logic high” portion of the wave-

form. This is due to positive reflections caused by the

gradually increasing impedance of the tapered line. How-

ever, by reversing the direction of the line taper, the cor-

responding “logic high” region of the waveform shown

in Fig. 6L is flatter than is the case for the uniform lines,

because the negative reflections of the gradually decreas-

ing impedance partially cancel the rising voltage values

in the logic high region of the uniform line; in the mean-

time, the near-end crosstalk voltage is also minimized. By

changing the tapering angle and direction, the waveform

can be well controlled. This ability to alter the confor-

mation of the waveforms to any desired shape may find

some useful applications in practice. In each of the cases

discussed in Example 3, eight Chebyshev terms and 1024

FFT points were used; the execution time on a VAX-3500

was 37 s.

IV. CONCLUSIONS

In this paper, a technique has been described for the

analysis of the wavefront propagation characteristics of

multiple tapered stripline and microstrip lines used as in-

terconnects in high speed, high density multichip digital

circuits. The frequency domain method computes cross-

talk and waveform distortions, and correctly accounts for

conductor losses (as a function of frequency) and for

varying conductor widths and spacing. The technique, re-

ferred to as the pseudo-spatial technique, utilizes the or-

thogonality of both Fourier transform and Chebyshev ex-

pansions to simplify the mathematical formulation. It turns

out that the new algorithm solves uniform lines as a spe-

cial case, almost as rapidly as do less general methods

(modal analysis [7], for instance).
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where ati is given by (25). For the jth line, then

la(j)’) = X; ’) IIJ’)} + x;’) lb(’))

+ . . . + xy)[b(~)) (66)

l~(J)* ) = -&) la(l)) + -J& la(a)

+ . . . + X~)[a(~)). ((67)

Now if we define the following N X (Nc + 1) length

column vectors, the pertinent equations can be written in

An improvement over the time domain approach was

achieved by avoiding time stepping recursive computa-

tions and state matrix computations, thus improving nu-

merical efficiency and stability. Frequency dependent

phenomena, including skin effect, internal inductance and

dielectric loss can also be addressed by this technique.

The frequency domain algorithm is also easier to incor-

porate with other transmission line networking CAD

packages, which themselves operate in the frequency do-

main. The pseudo-spatial method was derived under the

quasi-TEM assumption, in that any dispersive effects

caused by transverse current flows were ignored. How-

ever, within a frequency range of less than approximately

5 GHz, these derivations using the Quasi-TEM assump-

tion appear to provide an excellent simulation of the per-

formance of tapered lines, and great simplicity in both

derivation and implenne@ation.

more compact form as

[1
\a(o* )

1A*) = la(2:*);
@i*)

“’=!21;’
(68)

(69)

(70)

(71)

APPENDIX

DERIVATION OF lVIULTIPLE COUPLED LINE CASE

As an extension of the results derived in Section 2.1 for

the single line case, we derive in this appendix the equa-

tions for the case of ~multiple coupled tapered lines. The

voltage and current on the jth line of an N line system is

given by the following equations:
“p(l)’)

p(v)

,b(k’)
.:l

(56)

la(I’O’)(57)

Defining X2 and XY to be
for any particular frequency. Here, Z(~k) (x) and Y(J~) (x)

represent the self (j == k) and mutual impedances and ad-

mittances of the k th line on the j th line, which are given

by

z(j~) (x) . . R (~k)(x) + jtiL ‘jk) (x) (58)

y(lk) (x) . . G(~k) (x) + jtiC ‘Jk)(x). (59)

X$N) -

x;N’

x\NN)-

rX;l) xy2) “ “ “

x$y Xp “ “ “

x~ = . . . .
1 . . .
Lx\N’) x~N2)“ “ “

The Chebyshev expansions of voltage and current for

the j th line are

NC

x(lN)-

x(2N)

.

xp’N)_

“Xyv -@#) . . .

-@#) -3@) ., ,

. .

.Xy’) x$’”) “ “ “

jyy = (72)(60)

Nc

(61)
we can write

and

The differentiation relation still holds, and can be written

as

la(j)’) = Dcla(j)* ) (62)

1A*) = Xzl’) (73)

(74)l’”) = XYIA).

With Dg defined as the block diagonal

the differentiation matrix equation as

1A’) =D; IA*)

1’1) =D; IB*).

of Dc we can write
The entries of the nonuniformity matrices, X~~”) and

X~mn) can be written as

(75)

(76)x~mn)(i, j) = Q!ij [m’] + q% II (65)
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The bounda~ condition relations for each line still hold,

in the form of

1~(~)’) = QFla(J)) + Vj(+l)lf2f) (77)

1~(~~’) = QNlb(J)) + zj(-1) le~) (78)

so that if we define QF~, E~D, QND, END to be the block

diagonal matriceslvectors of QF, E~, QN, EN, respec-

tively, then the boundary condition relations are

1A’) = QFDIA) + EF~ltJ(+ l)) (79)

[B]) = Q~~lB) + ENDli(-l)) (80)

so that we can now combine (76), (74) and (80) into

D$XylA) = Q~~lB) + E~Dli(–l)). (81)

and we can also combine (75), (73) and (79) to form

D~XzlB) = QFDIA) + E~D Iu(+l)) (82)

so that in turn, we can define

[11A)

‘p) = Ill)
(83)

[

D;XY O
x~ =

o 1D;XZ

[1

O QND
QNF =

QFD o

[1

O END
EN~ =

EOFD

(84)

(85)

(86)

and write

XH 1P) = QN~ 1P) + ENF IWFN) (87)

Again, if we define FN~ and F~D to be the block diagonal

of the vectors ( ~Nl and ( j~l respectively, and define

[1FND O
FNF =

O F~~
(88)

we can then write

FN~lP) = [WN~). (89)

The terminations on each line are described for the jth

line, by the equations

V~)(@)= Z~)~(–l) + ~j(–l) (90)

Vj(+l)

~(+1) = —
Zp)

+ zpJ(cd). (91)

Using the following definitions to simplify notation:

~ [ 1
2$ 0 -.. 0

0 Zg) ”-. o
z~= . . . . (92)

. . .
. .

0 0 “.. Zp

[1
Zp 0.”” 0

0 2; . . . o
ZL= . . . .

. . . .

. . . .

0 0 . . . Zy

[1o –z~
z~ =

z~’ o

rl V*(*l))
1

[:1
Iv*(* l))

Iv(*l)) = .

lvN(+l))

[1
Ii[(+ l))

Ii,(* l))
Ii(-+ 1)) = .

/iN(+ l))

[1Iv(-l))

lWNF) = Ii(+l))

[1Iv(+l))

lWFN) = Ii(-l))

(93)

(94)

(95)

(96)

(97)

(98)

(99)

[1
pp)

pp )
IZL) = . (loo)

ll& )

[1IvG)
Iu) = ,lL) .

This notation allows us to write

(101)

lWN~) = Z~lWFN) + [U). (102)

The solution, after algebraic manipulations, turns out to

be

1P) = (XH - QN~)-’EN~

. {FN~(XH - QN~)-’EN~ - Z~}-ll U). (103)
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